
Advanced Graphics

Ray Tracing: Surfaces and Scenes
Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

Procedural volumetric texture

By mapping 3D coordinates to colors, we can create
volumetric texture. The input to the texture is local model
coordinates; the output is color and surface characteristics.
For example, to produce wood-grain texture, trees grow

rings, with darker wood from earlier in the year and lighter
wood from later in the year.
● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood +
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1

Adding realism

The teapot on the previous slide doesn’t look very wooden,
because it’s perfectly uniform. One way to make the surface
look more natural is to add a randomized noise field to f(P):
f(P) = (XP

2+ZP
2 + noise(P)) mod 1

where noise(P) is a function that maps 3D coordinates in
space to scalar values chosen at random.

For natural-looking results, use
Perlin noise, which interpolates
smoothly between noise values.

Perlin noise

Perlin noise (invented by Ken Perlin) is a method for
generating noise which has some useful traits:
● It is a band-limited repeatable pseudorandom

function (in the words of its author, Ken Perlin)
● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended

arbitrarily in space, yet cached deterministically

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker

Perlin noise 1

Perlin noise caches ‘seed’ random values on a grid
at integer intervals. You’ll look up noise values at
arbitrary points in the plane, and they’ll be
determined by the four nearest seed randoms on the
grid.
Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)}
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 2

For each of the four corners, take the dot product of the
random seed vector with the vector from that corner to
(x, y). This gives you a unique scalar value per corner.
● As (x, y) moves across this cell of the grid, the

values of the dot products will change smoothly,
with no discontinuity.

● As (x, y) approaches a grid point, the contribution
from that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a
range close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)

Perlin noise 3

Now we take a weighted average of LL, LR, UL, UR.
Perlin noise uses a weighted averaging function chosen
such that values close to zero and one are moved closer
to zero and one, called the ease curve:

S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:

noise(x, y) =
 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))

Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’

Tuning noise

Texture frequency
1 → 3

Noise frequency
1 → 3

Noise amplitude
1 → 3

Normal mapping

Normal mapping applies the principles of texture mapping
to the surface normal instead of surface color.

In a sense, the ray tracer
computes a trompe-l’oeuil
image on the fly and
‘paints’ the surface with
more detail than is actually
present in the geometry.

The specular and diffuse shading of the
surface varies with the normals in a dent on
the surface.
If we duplicate the normals, we don’t have

to duplicate the dent.

Normal mapping

Constructive Solid
Geometry (CSG) builds
complicated forms out of
simple primitives.

These primitives are
combined with basic
boolean operations: add,
subtract, intersect.

CSG figure by Neil Dodgson

Constructive Solid Geometry

CSG models are easy to ray-trace but difficult to
polygonalize
● Issues include choosing polygon boundaries at edges;

converting adequately from pure smooth primitives to
discrete (flat) faces; handling ‘infinitely thin’ sheet
surfaces; and others.

● This is an ongoing research topic.
CSG models are well-suited to machine milling, automated
manufacture, etc
● Great for 3D printers!

Constructive Solid Geometry

CSG surfaces can be described by a binary
tree, where each leaf node is a primitive and
each non-leaf node is a boolean operation.

(What would the not
of a surface look like?)

Figure from Wyvill (1995) part two, p.
4

Constructive Solid Geometry

Three operations:
1. Union 2. Intersection 3. Difference

Constructive Solid Geometry

For each node of the binary tree:
● Fire ray r at A and B.
● List in t-order all points

where r enters of leaves A or B.
● You can think of each intersection as

a quad of booleans--
(wasInA, isInA, wasInB, isInB)

● Discard from the list all intersections which don’t
matter to the current boolean operation.

● Pass the list up to the parent node and recurse.

Constructive Solid Geometry

Each boolean operation can be
modeled as a state machine.
For each operation, retain
those intersections that
transition into or out of
the critical state(s).

● Union:
{In A | In B | In A and B}

● Intersection: {In A and B}
● Difference: {In A}

In A and
B

In A In B

Not in A
or B

Enter B

Leave B

Enter B

Leave B

Enter A

Leave A

Leave A

Enter A

Ray-tracing CSG models

● Example: Difference (A-B)
A B

t1
t2, t3

t4

 A-B Was In A Is In A Was In B Is In B

 t1 No Yes No No

 t2 Yes Yes No Yes

 t3 Yes No Yes Yes

 t4 No No Yes No

difference =
((wasInA != isInA) &&
 (!isInB)&&(!wasInB))
||
((wasInB != isInB) &&
 (wasInA || isInA))

Ray-tracing CSG models

Difference Intersection

CSG in action

The matrix stack design pattern

A common design pattern in 3D graphics, especially when
objects can contain other objects, is to use matrix stacks to
store stacks of matrices. The topmost matrix is the product
of all matrices below.

● This allows you to build a local frame of reference—
local space—and apply transforms within that space.

● Remember: matrix multiplication is associative but not commutative.
● ABC = A(BC) = (AB)C ≠ ACB ≠ BCA

Pre-multiplying matrices that will be used more
than once is faster than multiplying many
matrices every time you render a primitive.

A

AB

ABC

Matrix stacks and scene graphs

Matrix stacks are designed for nested relative
transforms.
pushMatrix();
 translate(0,0,-5);
 pushMatrix();
 rotate(45,0,1,0);
 render();
 popMatrix();
 pushMatrix();
 rotate(-45,0,1,0);
 render();
 popMatrix();
popMatrix();

identity

T

identity

T

T • R1

identity

T

T • R2

identity

T

…

render your
geometry here

Scene graphs

A scene graph is a tree of scene
elements where a child’s transform
is relative to its parent.

The final transform of the child is
the ordered product of all of its
ancestors in the tree.

Matrix stacks and depth-first
traversal of your scene graph: two
great tastes that go great together! MfingerToWorld =

(Mperson • Mtorso • Marm • Mhand • Mfinger)

Person

Torso

Arm Arm Leg …

Hand

Finger

…

…

…

Your scene graph and you

Many 2D GUIs today favor an event model in which events ‘bubble up’
from child windows to parents. This is sometimes mirrored in a scene
graph.
● Ex: a child changes size, changing the size of the parent’s bounding box
● Ex: the user drags a movable control in the scene, triggering an update event

If you do choose this approach, consider using the Model View Controller
or Model View Presenter design pattern. 3D geometry objects are good
for displaying data but they are not the proper place for control logic.
● For example, the class that stores the geometry of the rocket should not be the

same class that stores the logic that moves the rocket.
● Always separate logic from representation.

Great for…
● Collision detection between scene

elements
● Culling before rendering
● Accelerating ray-tracing

Your scene graph and you

A common optimization derived
from the scene graph is the
propagation of bounding volumes.

Nested bounding volumes allow
the rapid culling of large portions
of geometry
● Test against the bounding volume

of the top of the scene graph and
then work down.

Bounding volumes help to quickly accelerate volumetric tests,
such as “does the ray hit the cow?”

● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight

Axis-aligned bounding boxes
● max and min of x/y/z.

Bounding spheres
● max of radius from some rough center

Bounding cylinders
● common in early FPS games

Speed up ray-tracing with bounding volumes

Hierarchies of bounding
volumes allow early discarding
of rays that won’t hit large
parts of the scene.

● Pro: Rays can skip
subsections of the hierarchy

● Con: Without spatial
coherence ordering the
objects in a volume you hit,
you’ll still have to hit-test
every object

Bounding volumes in hierarchy

Split space into cells and
list in each cell every
object in the scene that
overlaps that cell.

● Pro: The ray can skip
empty cells

● Con: Depending on cell
size, objects may
overlap many filled cells
or you may waste
memory on many empty
cells

Subdivision of space

The BSP tree partitions the
scene into objects in front of,
on, and behind a tree of planes.

● When you fire a ray into the scene,
you test all near-side objects before
testing far-side objects.

Problems:
● choice of planes is not obvious
● computation is slow
● plane intersection tests are heavy on

floating-point math. A

B

C

E

F
D

Popular acceleration structures:
BSP Trees

The kd-tree is a simplification of the
BSP Tree data structure

● Space is recursively subdivided by axis-
aligned planes and points on either side
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion
time (but this is very optimizable by
domain knowledge) and O(n2/3) search
time.

● kd-trees don’t suffer from the
mathematical slowdowns of BSPs because
their planes are always axis-aligned.

Image from Wikipedia, bless their
hearts.

Popular acceleration structures:
kd-trees

The Bounding Interval Hierarchy
subdivides space around the volumes
of objects and shrinks each volume to
remove unused space.

● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval
Hierarchy, Eurographics (2006)

Popular acceleration structures:
Bounding Interval Hierarchies

Hierarchical modeling in action
void renderLevel(GL gl, int level, float t) {
 pushMatrix();
 rotate(t, 0, 1, 0);
 renderSphere(gl);
 if (level > 0) {
 scale(0.75f, 0.75f, 0.75f);
 pushMatrix();
 translate(1, -0.75f, 0);
 renderLevel(gl, level-1, t);
 popMatrix();
 pushMatrix();
 translate(-1, -0.75f, 0);
 renderLevel(gl, level-1, t);
 popMatrix();
 }
 popMatrix();
}

Hierarchical modeling in action

